Analog Peak Detector and Derandomizer

G. De Geronimo, A. Kandasamy, <u>P. O'Connor</u>
Brookhaven National Laboratory
IEEE Nuclear Sciences Symposium, San Diego
November 7, 2001

Multichannel Readout Alternatives

Direct digitization

- most flexible
- requires many fast ADCs
- expensive, high power

Track-and-Hold + Analog Multiplex

- requires trigger
- · has deadtime
- timing uncertainty
- requires sparsification

Analog Memory + Analog Multiplex

- requires trigger
- can be deadtimeless (complex control)
- · requires sparsification

Ideal Self-triggered, Self-sparsifying, Deadtimeless Readout

Peak Detector (PD)

Advantages

- self-triggering
- self-sparsifying
- timing output

Drawbacks

- accuracy impaired by op-amp offsets, CMRR, slew rate
- poor drive capability
- deadtime until reset

Improved CMOS PD Using Two-Phase Configuration

Write phase

- conventional peak detector
- M1: unidirectional current source
- voltage on C_H includes op-amp errors (offset, CMRR)

Read phase

- same op-amp re-used as unity-gain buffer
- same CM voltage
- op-amp errors cancel
- enables rail-to-rail sensing
- provides good drive capability

Two-Phase Peak Detector in 0.35 µm CMOS

SCHEMATIC

LAYOUT

PD loop with switches

Switch control logic (data driven)

Two-Phase CMOS Peak Detector - Results

Waveforms

Droop rate

Absolute accuracy

Time walk

Two-Phase CMOS Peak Detector - Summary

- Self-triggering
- 2-phase operation eliminates op-amp errors
 - High absolute accuracy independent of process, supply, temperature variation
 - Rail-to-rail input and output
- Strong drive capability
- No switch charge injection into hold node
- Timing output

Parameter	Value
Technology	0.35 μm CMOS DP4M
Supply voltage	3.3 V
Input voltage range	0.3 – 3 V
Absolute accuracy	0.2 %, t _p ≥ 500ns
	0.7%, t _o =200ns
Time walk	\pm 2.3 ns, V_{in} < 2.5 V
	\pm 5 ns, $V_{in} < 3 V$
Droop rate	0.25 V/s
Power dissipation	3.5 mW
Cell area	0.03 mm ²

Peak Detector and Derandomizer

- Combine the peak detect and analog hold functions of the PD with additional analog storage and control logic to create a Peak Detector— Derandomizer (PDD).
- PDD behaves like a data driven, analog FIFO memory.
- Topologies:

B: PD plus SCA as analog buffer

C: PD with multiple hold capacitors

A: Array of PD with ping-pong control

Topology <u>A</u> with two parallel PDs has been fabricated and tested.

Multichannel Readout System with PDD

SSM: self-switched multiplexer; custom chip that detects above-threshold inputs and routes them to PDD input.

In response to a READ request from the DAQ system (pulser), the next peak sample stored in the PDD is presented to the 12-bit ADC.

After a fixed delay the pulser RESETs the PDD that was read out, freeing it to process next input pulse.

Multichannel PDD Readout System: First Results

- Input pulses from source occur randomly
- READ process is synchronous 200 kHz
- READ rate matches average input rate
- Simultaneous readout and acquisition of new data
- 2-sample buffer absorbs rate fluctuations

Multichannel PDD Readout System

Spectra

Solid line: commercial MCA.

Points: PDD, single channel.

Circles: PDD, 16 channels gain-adjusted.

Resolution limited by CZT detectors.

Source Profile

²⁴¹Am source centered over channel 2.

Summary

- New 2-phase peak detector in submicron CMOS:
 - High absolute accuracy (0.2%) and linearity (0.05%)
 - Rail-to-rail input and output
 - ± 2.3 ns time walk
 - Low power (3.5 mW)
 - Extremely compact (0.03 mm²)
- A building block for compact, efficient multichannel readout system:
 - Self-triggered
 - Self-sparsifying
 - Deadtimeless
- Peak detector derandomizer (PDD) with 2-event buffer demonstrated:
 - First step towards data-driven analog FIFO readout